首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
Authors:Toshinari Maeda  Viviana Sanchez-Torres  Thomas K. Wood
Affiliation:(1) Artie McFerrin Department of Chemical Engineering, Texas A & M University, 220 Jack E. Brown Building, College Station, TX 77843-3122, USA;(2) Department of Biology, Texas A & M University, College Station, TX 77843–3258, USA;(3) Zachry Department of Civil and Environmental Engineering, Texas A & M University, College Station, TX 77843-3136, USA
Abstract:To utilize fermentative bacteria for producing the alternative fuel hydrogen, we performed successive rounds of P1 transduction from the Keio Escherichia coli K-12 library to introduce multiple, stable mutations into a single bacterium to direct the metabolic flux toward hydrogen production. E. coli cells convert glucose to various organic acids (such as succinate, pyruvate, lactate, formate, and acetate) to synthesize energy and hydrogen from formate by the formate hydrogen-lyase (FHL) system that consists of hydrogenase 3 and formate dehydrogenase-H. We altered the regulation of FHL by inactivating the repressor encoded by hycA and by overexpressing the activator encoded by fhlA, removed hydrogen uptake activity by deleting hyaB (hydrogenase 1) and hybC (hydrogenase 2), redirected glucose metabolism to formate by using the fdnG, fdoG, narG, focA, focB, poxB, and aceE mutations, and inactivated the succinate and lactate synthesis pathways by deleting frdC and ldhA, respectively. The best of the metabolically engineered strains, BW25113 hyaB hybC hycA fdoG frdC ldhA aceE, increased hydrogen production 4.6-fold from glucose and increased the hydrogen yield twofold from 0.65 to 1.3 mol H2/mol glucose (maximum, 2 mol H2/mol glucose).
Keywords:Enhanced hydrogen production  Metabolic engineering  P1 transduction  Glucose metabolism  Fermentative hydrogen
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号