首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of T-cadherin as a novel target of DNA methyltransferase 3B and its role in the suppression of nerve growth factor-mediated neurite outgrowth in PC12 cells
Authors:Bai Shoumei  Ghoshal Kalpana  Jacob Samson T
Institution:Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA.
Abstract:Previously we showed that DNA methyltransferase 3b (Dnmt3b) is required for nerve growth factor (NGF)-induced differentiation of PC12 cells to neuronal phenotype. The present study identified T-cadherin (T-Cad) as one of the targets of Dnmt3b by chromatin immunoprecipitation (ChIP) assay. Combined bisulfite restriction analysis and bisulfite sequencing showed that T-Cad promoter was sparsely methylated in PC12 cells. ChIP-CHOP analysis demonstrated that Dnmt3b is associated with T-Cad promoter irrespective of its methylation status. The mRNA and protein levels of T-Cad were markedly elevated in cells depleted of Dnmt3b by antisense or small interfering RNA. Suppression of T-Cad promoter activity by Dnmt3b was independent of its catalytic activity, which was consistent with the insignificant change in T-Cad promoter methylation status in Dnmt3b-depleted cells. In contrast, deletion of its N-terminal ATRX and PWWP domain abolished its repressor function. Association of histone deacetylase 2 (Hdac2) with T-Cad promoter and restoration of the promoter activity from Dnmt3b-mediated suppression upon treatment with Hdac inhibitor indicated involvement of histone deacetylation in this process. NGF-induced neurite outgrowth was inhibited in a dose dependent manner upon ectopic expression of T-Cad in PC12 cells. Immunofluorescence studies showed that T-Cad was redistributed upon NGF treatment, as evident from its concentration in axon growth cones as opposed to its localization at cell-cell contact region in undifferentiated cells. These results demonstrate a novel role of T-Cad in the NGF-mediated differentiation of PC12 cells to neuronal phenotype.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号