首页 | 本学科首页   官方微博 | 高级检索  
     


Chloroplast DNA Transgresses Species Boundaries and Evolves at Variable Rates in the California Closed-Cone Pines (Pinus radiata, P. muricata, and P. attenuata)
Authors:Hong Yong-Pyo   Krupkin Alex B.  Strauss Steven H.
Abstract:We studied phylogenetic relationships among populations and species in the California closed-cone pines (Pinus radiata D. Don, P. attenuata Lemm., and P. muricata D. Don) via chloroplast DNA restriction site analysis. Data on genetic polymorphism within and among 19 populations in the three species were collected using9 to 20 restriction enzymes and 38 to 384 trees. Because only five clades and extremely low intraclade diversity were found, additional phylogenetic data were collected using a single representative per clade and two outgroup species, P. oocarpa Schiede and P. jeffreyi Loud. In total, 25 restriction enzymes were employed and approximately 2.7 kb surveyed (2.3% of genome). The five clades recognized were Monterey pine, knob-cone pine, and the southern, intermediate, and northern races of bishop pine. On the basis of bootstrapping, both Wagner and Dollo parsimony analyses strongly separated the northern and intermediate races of bishop pine from the southern race; knobcone pine from Monterey and bishop pines; and the closed-cone pines from the two outgroups. Approximate divergence times were estimated for the lineages leading to knob-cone pine and to the intermediate and northern populations of bishop pine. The position of Monterey pine relative to bishop pine within their monophyletic clade was unresolved. Surprisingly, Montery pine and the southern race of bishop pine were much more similar to one another than was the southern race of bishop pine to its conspecific intermediate and northern races. Both the Monterey and southern bishop pine lineages also evolved severalfold more slowly than did the knobcone pine and intermediate-northern bishop pine lineages. These results differ significantly from a recent allozyme study, corroborating previous observations that chloroplast genome phylogeny can depart substantially from that of nuclear genes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号