首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Integrating computational methods to retrofit enzymes to synthetic pathways
Authors:Brunk Elizabeth  Neri Marilisa  Tavernelli Ivano  Hatzimanikatis Vassily  Rothlisberger Ursula
Institution:Laboratory of Computational Chemistry and Biochemistry, EPFL, CH-1015 Lausanne, Switzerland.
Abstract:Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate.
Keywords:systems biology  metabolic engineering  synthetic pathway generation  enzyme engineering  computational biology  synthetic biology
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号