首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution of social learning: a mathematical analysis
Authors:Wakano Joe Yuichiro  Aoki Kenichi  Feldman Marcus W
Affiliation:Department of Biological Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyoku, Tokyo 113-0033, Japan. joe@biol.s.u-tokyo.ac.jp
Abstract:Social learning is an important ability seen in a wide range of animals including humans. It has been argued that individual learning, social learning, and innate determination of behavior are favored by natural selection when environmental changes occur at short, intermediate, and long intervals, respectively. Only recently, however, has the hypothesis been examined by means of mathematical models. In this paper, we construct a simple model in which each organism uses one of three genetically determined strategies--it is an individual learner, a social learner or an "innate"--and the three types of organisms are in direct competition with each other. A reduced model, involving only the individual learners and innates, is effectively linear, and we show that by solving the eigenvalue problem of this reduced system we arrive at a good approximation to the global dynamics of the full model. We also study the effect of stochastic environmental changes and reversible mutations among the three strategies. Our results are consistent with the predictions of previous studies. In addition, we identify a critical level of environmental constancy below which only individual and social learners are present.
Keywords:Social learning   Individual learning   Innate behavior   Environmental change
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号