首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Review of an Ultrafast and Sensitive Bioassay Platform Technology: Microwave-accelerated Metal-enhanced Fluorescence
Authors:Kadir Aslan  Chris D Geddes
Institution:1. Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, and Laboratory for Advanced Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard St, Baltimore, MD, 21201, USA
Abstract:Since the publication of our first paper on the microwave-accelerated metal-enhanced fluorescence (MAMEF) bioassay platform technology in 2005 (Aslan and Geddes, Anal Chem 77:8057–8067, 2005), we have been repeatedly asked to comment on the advantages of “microwave heating” with plasmonic nanostructures over conventional heating for bioassays by many of our colleagues in the community. We note that one can find a couple of review articles, one by Mingos (Gabriel et al., Chem Soc Rev 27:213–223, 1998) and another by Thostenson and Chou (Manufacturing 30:1055–1071, 1999), summarizing the fundamentals and several applications of microwave processing of chemical compounds and composite materials, respectively. These review articles also present a direct comparison of microwave heating with conventional heating with respect to the processing of materials and microwave-assisted synthesis of chemical compounds. In this review article, we seek to remind the reader of the fundamentals of microwave heating and the interactions of microwaves with chemical and biological materials relevant to our recent work on bioassays, rather than repeating the information provided in the above-mentioned very informative reviews. We also summarize our work on MAMEF-based bioassays where we use plasmonic nanostructures to additionally plasmon-enhance fluorescence signatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号