首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intercalation of cationic dyes in the DNA double helix: introductory theory
Authors:C Bustamante  D Stigter
Abstract:The effect of salt on the intercalation of acridine dyes and DNA is rather well explained by the Gouy-Chapman double-layer theory as applied to a cylinder model of the DNA–dye complex. The free energy of transfer of a dye ion from the bulk solution to the complex is divided into several parts, one of which, ΔF0, accounts for the short-range, nonelectrostatic interactions. The assumption that ΔF0 should not depend on the amount of dye in the complex leads to an internal dielectric constant of the cylinder of about Di = 7. The scatter in ΔF0 values, as calculated from individual experimental points, is of order 0.5 kT per dye ion. This scatter is large enough to mask possible effects of heterogeneity in DNA sequences. The calculations are made for a long cylinder with radius 10 Å, with the DNA phosphate charges smeared uniformly at the surface, a uniform spacing of dye charges at the cylinder axis, and a length of b = 3.37 Å per base pair. Each intercalated dye ion also adds a length b to the total length of the cylinder. The salt-dependent part of the electric free energy of intercalation, ΔF1, is tabulated for complexes with r = 0–0.24 dye ions per DNA phosphate in 0.002–0.2M monovalent salt and dye solutions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号