首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function
Authors:A Sener  J Rasschaert  W J Malaisse
Institution:Laboratory of Experimental Medicine, Brussels Free University, Belgium.
Abstract:A rise in extracellular D-glucose concentration results in a preferential and Ca2(+)-dependent stimulation of mitochondrial oxidative events in pancreatic islet cells. The possible participation of Ca2(+)-dependent mitochondrial dehydrogenases, especially 2-ketoglutarate dehydrogenase, in such an unusual metabolic situation was explored in intact islets, islet homogenates and isolated islet mitochondria. In intact islets exposed to a high concentration of D-glucose, the removal of extracellular Ca2+ impaired D-6-14C]glucose oxidation whilst failing to affect the cytosolic or mitochondrial ATP/ADP ratios. In islet homogenates, the activity of 2-ketoglutarate dehydrogenase displayed exquisite Ca2(+)-dependency, the presence of Ca2+ causing a 10-fold increase in affinity for 2-ketoglutarate. In intact islet mitochondria, the oxidation of 2-1-14C]ketoglutarate also increased as a function of extramitochondrial Ca2+ availability. Moreover, prior stimulation of intact islets by D-glucose resulted in an increased capacity of mitochondria to oxidize 2-1-14C]ketoglutarate. The absence of extracellular Ca2+ during the initial stimulation of intact islets impaired but did not entirely suppress such a memory phenomenon. It is proposed that the mitochondrial accumulation of Ca2+ in nutrient-stimulated islets indeed accounts, in part at least, for the preferential stimulation of mitochondrial oxidative events in this fuel-sensor organ.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号