首页 | 本学科首页   官方微博 | 高级检索  
     


Functional analysis of chemically synthesized derivatives of the human CC chemokine CCL15/HCC-2, a high affinity CCR1 ligand.
Authors:S E Escher  U Forssmann  A Frimpong-Boateng  K Adermann  J Vakili  H Sticht  M Detheux
Affiliation:IPF PharmaCeuticals GmbH, Feodor-Lynen-Strasse 31, D-30625 Hannover, Germany. s.escher@ipf-pharmaceuticals.de
Abstract:The CCL15 is a human CC chemokine that activates the receptors, CCR1 and CCR3. Unlike other chemokines, it contains an unusually long N-terminal domain of 31 amino acids preceding the first cysteine residue and a third disulfide bond. To elucidate the functional role of distinct structural determinants, a series of sequential amino-terminal truncated and point-mutated CCL15 derivatives as well as mutants lacking the third disulfide bond and the carboxy-terminal alpha-helix were synthesized using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. We demonstrate that a truncation of 24 amino acid residues (delta24-CCL15) converts the slightly active 92-residue delta0-CCL15 into a potent agonist of CC chemokine receptor 1 (CCR1) and a weak agonist of CCR3 in cell-based assays. The biological activity decreases from delta24-CCL15 to delta29-CCL15, and re-increases from delta29-CCL15 to delta30-CCL15. Thus, an exocyclic N-terminal region of only one amino acid residue is sufficient for efficient CCR1 activation. As none of the peptides investigated except for delta24-CCL15 activates CCR3, we suggest that CCR1 is the major receptor for CCL15 in vivo. Further we demonstrate that the third disulfide bond of CCL15 and an exchange of tyrosine in position 70 by a leucine residue, which is conserved in CXC chemokines, do not alter the interaction with CCR1. In contrast, a CCL15 derivative lacking the carboxy-terminal alpha-helix exhibits a complete loss of tertiary structure and hence loss of CCR1 agonistic and binding activity. This study demonstrates that specific protein residues in chemokines, which contribute to receptor-ligand interaction, vary significantly between chemokines and cannot be extrapolated using data from functionally related chemokines.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号