首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein Phosphorylation in Bovine Adrenal Medullary Chromaffin Cells: Histamine-Stimulated Phosphorylation of Tyrosine Hydroxylase
Authors:S J Bunn  S M Harrison  P R Dunkley
Institution:Neuroscience Group, Faculty of Medicine, University of Newcastle, New South Wales, Australia.
Abstract:Histamine can cause the release of catecholamines from bovine adrenal medullary chromaffin cells by a mechanism distinct from that of the depolarizing agents nicotine or high K+ buffer. It was the aim of this study to determine the protein phosphorylation responses to histamine in these cells and to compare them with those induced by depolarization. A number of proteins showed increases in phosphorylation in response to histamine especially when analyzed on two-dimensional polyacrylamide gel electrophoresis or by phosphopeptide mapping; one protein of 20,000 daltons was markedly dephosphorylated. Emphasis was given to the effects of histamine on tyrosine hydroxylase (TOH) phosphorylation, because this protein showed the most prominent changes on one-dimensional gels. Histamine acted via H1 receptors to increase TOH phosphorylation; the response was blocked by the H1 antagonist mepyramine and could be mimicked by the H1 agonist thiazolylethylamine, but not by the H2 agonist dimaprit. The H3 agonist (R) alpha-methylhistamine increased TOH phosphorylation at high concentrations, but the response was blocked entirely by mepyramine. Histamine rapidly increased the phosphorylation of TOH, with a maximum reached within 5 s and maintained for at least 30 min. This was in marked contrast to nicotine-stimulated protein phosphorylation of TOH, which was rapidly desensitized. The initial phosphorylation response to histamine was independent of extracellular Ca2+ for at least 3 min, but the sustained response required extracellular Ca2+. This was in contrast to the situation with both nicotine and high K+ buffer, which under the conditions used here caused a response which was dependent on extracellular Ca2+ at all times investigated. In the presence of histamine, the phosphopeptide profiles for TOH were essentially the same with or without Ca2+, suggesting that the same protein kinases were involved, but at longer times there was evidence of new phosphorylation sites. The mechanism or mechanisms whereby histamine modulates TOH phosphorylation are discussed with emphasis on the differences from depolarizing agents.
Keywords:Adrenal chromaffin cells  Protein phosphorylation  Histamine  Tyrosine hydroxylase  Calcium  Nicotine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号