首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Incorporation of 18O2 and absence of stereospecificity in primary product formation during fungal metabolism of a lignin model compound
Authors:Fumiaki Nakatsubo  Ian D Reid  TKent Kirk
Institution:U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, P.O. Box 5130, Madison, WI 53705, U.S.A.
Abstract:The metabolism of a lignin substructure model compound, 1,2-bis(3-methoxy-4-ethoxyphenyl)propane-1,3-diol (Ia) in ligninolytic cultures of Phanerochaete chrysosporium was studied to help elucidate the biochemical mechanism of lignin degradation. The primary reaction was cleavage of the model compound between C1 and C2 of the propane moiety to produce 1-(3-methoxy-4-ethoxyphenyl)ethane-1,2-diol and a C6-C1 product (probably 3-methoxy-4-ethoxybenzaldehyde). Other identified products arose secondarily; all were further metabolized. Even though the model compound was a mixture of four stereoisomers, no stereoselectivity was observed in its metabolism. In cultures under 18O2, the initial cleavage produced the diol product with ≈70% enrichment by 18O in the benzyl alcohol group. The diol was a mixture of the two possible enantiomers, and the O2-derived hydroxyl was incorporated at the asymmetric (benzyl) carbon. (Limited optical activity in the diol was traced to selective further metabolism of the D form.) These results show that the primary cleavage reaction lacked stereospecificity and was primarily oxygenative, implicating a nonspecific oxygenase or a nonenzymatic reaction involving activated oxygen. Preliminary experiments demonstrated no cell homogenate activity against Ia.
Keywords:Lignin degradation  Singlet oxygen  Aromatic compound  Oxygen incorporation  Stereospecificity  (White-rot fungi)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号