首页 | 本学科首页   官方微博 | 高级检索  
   检索      


UMP synthesis in the kinetoplastida
Authors:David J Hammond  Winston E Gutteridge
Institution:Biological Laboratory, University of Kent, Canterbury, Kent CT2 7NJ, U.K.
Abstract:All six enzymes of pyrimidine biosynthesis de novo have been detected in homogenates of the culture promastigote form of Leishmania mexicana amazonensis, the blood trypomastigote form of Trypanosoma brucei and the culture epimastigote, blood trypomastigote and intracellular form of Trypanosoma cruzi. Dihydroorotate dehydrogenase is mitochondrial in mammals, but the isofunctional enzyme, dihydroorotate oxidase was found to be cytoplasmi, whereas orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase, which are cytoplasmic in mammals, were found to be particulate. Analysis by isopycnic sedimentation in sucrose showed that both particulate enzymes co-sedimented with glycosomal-(microbody-)marker enzymes such as hexokinase. Electron microscopy indicated that fractions containing these activities consisted essentially only of microbodies. It is concluded therefore that these enzymes are associated with glycosomes. Kinetic studies with intact glycosomal preparations suggested that there was no membrane barrier between 5-phosphoribose 1-pyrophosphate (P-Rib-PP) and orotate phosphoribosyltransferase, indicating either that the active site of this enzyme is probably on the outside of the glycosome or that the glycosome may have an efficient transport site for P-Rib-PP. Not all the UMP salvage enzymes assayed were detected. No uridine kinase activity was found in any of the species investigated, suggesting that uridine salvage might be routed via a uridine phosphoribosyltransferase. In agreement with this suggestion, these latter activities were detected in all organisms tested except the intracellular amastigote form of T. cruzi, where uracil phosphoribosyltransferase appeared absent. All the UMP salvage enzymes investigated occurred in cytoplamic fractions.
Keywords:UMP synthesisl  Pyrimide  (Kinetoplastid)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号