首页 | 本学科首页   官方微博 | 高级检索  
     


Proteinase inhibitor synthesis in tomato leaves : induction by chitosan oligomers and chemically modified chitosan and chitin
Authors:Walker-Simmons M  Ryan C A
Affiliation:Institute of Biological Chemistry and Biochemistry/Biophysics Program, Washington State University, Pullman, Washington 99164.
Abstract:Soluble chemical derivatives of chitin and chitosan including ethylene glycol chitin, nitrous acid-modified chitosan, glycol chitosan, and chitosan oligomers, produced from chitosan by limited hydrolysis with HCl, were found to possess proteinase inhibitor inducing activities when supplied to young excised tomato (Lycopersicon esculentum var Bonnie Best) plants. Nitrous acid-modified chitosans and ethylene glycol chitin exhibited about 2 to 3 times the activity of acid hydrolyzed chitosan and 15 times more activity than glycol chitosan. The parent chitin and chitosans are insoluble in water or neutral buffers and cannot be assayed. Glucosamine and its oligomers from degree of polymerization = 2 through degree of polymerization = 6 were purified from acid-fragmented chitosan and assayed. The monomer was inactive and dimer and trimer exhibited weak activities. Tetramer possessed higher activity and the larger pentamer and hexamer oligomers were nearly as active as the total hydrolyzed mixture. None of the fragments exhibited more than 2% acetylation (the limits of detection). The contents of the acid-fragmented mixture of oligomers was chemically N-acetylated to levels of 13% and 20% and assayed. The N-acetylation neither inhibited nor enhanced the proteinase inhibitor inducing activity of the mixture. These results, along with recent findings by others that chitinases and chitosanases are present in plants, provide further evidence for a possible role of soluble chitosan fragments as signals to activate plant defense responses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号