首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Future impact of integrated high-throughput methylome analyses on human health and disease
Authors:Lee M Butcher  Stephan Beck
Institution:UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
Abstract:A spate of high-powered genome-wide association studies (GWAS) have recently identified numerous single-nucleotide polymor- phisms (SNPs) robustly linked with complex disease. Despite interrogating the majority of common human variation, these SNPs only account for a small proportion of the phenotypic variance, which suggests genetic factors are acting in concert with non-genetic factors. Although environmental measures are logical covariants for genotype-phenotype investigations, another non-genetic intermediary exists: epigenetics. Epigenetics is the analysis of somatically-acquired and, in some cases, transgenerationally inherited epigenetic modifications that regulate gene expression, and offers to bridge the gap between genetics and environment to understand phenotype. The most widely studied epigenetic mark is DNA methylation. Aberrant methylation at gene promoters is strongly implicated in disease etiology, most notably cancer. This review will highlight the importance of DNA methylation as an epigenetic regulator, outline techniques to character- ize the DNA methylome and present the idea of reverse phenotyping, where multiple layers of analysis are integrated at the individual level to create personalized digital phenotypes and, at a phenotype level, to identify novel molecular signatures of disease.
Keywords:DNA methylation  reverse phenotyping  complex disease
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号