Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain |
| |
Authors: | Beel B D Hazelbauer G L |
| |
Affiliation: | School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA. |
| |
Abstract: | We used in vivo oxidative cross-linking of engineered cysteine pairs to assess conformational changes in the four-helix transmembrane domain of chemoreceptor Trg. Extending previous work, we searched for and found a fourth cross-linking pair that spanned the intrasubunit interface between transmembrane helix 1 (TM1) and its partner TM2. We determined the effects of ligand occupancy on cross-linking rate constants for all four TM1-TM2 diagnostic pairs in conditions that allowed the formation of receptor-kinase complexes for the entire cellular complement of Trg. Occupancy altered all four rates in a pattern that implicated sliding of TM2 relative to TM1 towards the cytoplasm as the transmembrane signalling movement in receptor-kinase complexes. Transmembrane signalling can be reduced or induced by single amino acid substitutions in the ligand-binding region of the periplasmic domain of Trg. We determined the effects of these substitutions on conformation in the transmembrane domain and on ligand-induced changes using the diagnostic TM1-TM2 cysteine pairs. Effects on rates of in vivo cross-linking showed that induced signalling substitutions altered the relative positions of TM1 and TM2 in the same way as ligand binding, and reduced signalling substitutions blocked or attenuated the ligand-induced shift. These results provide strong support for the helical sliding model of transmembrane signalling. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|