首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrophobic clustering in acid-denatured IL-2 and fluorescence of a Trp NH-pi H-bond
Authors:Nanda V  Liang S M  Brand L
Institution:Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
Abstract:The single tryptophan at position 121 of human interleukin-2 (IL-2) can form an NH-pi hydrogen bond with Phe 117 involving the indole nitrogen and the benzene aromatic ring. At pH 5.5, this type of aromatic interaction results in a fluorescence quantum yield three-fold lower than that of a fully solvent exposed tryptophan. At pH 2.1, IL-2 forms a compact denatured state with twice the emission intensity of the native protein. Global analysis of time-resolved fluorescence emission at multiple emission wavelengths shows that native and acid-denatured IL-2 can be described by four decay components. The fractional amplitudes of the shortest sub-nanosecond lifetimes are higher in the native state, suggesting rapid quenching due to the NH-pi hydrogen bond. In the denatured state, longer lifetimes have greater fractional amplitudes, indicating a smaller population of hydrogen-bonded species. Electrostatic-dipolar relaxation of the tryptophan microenvironment upon excitation is greater in the native-state of IL-2 than the acid-denatured state. This suggests that acid-denaturation sequesters Trp 121 from polar residues, while maintaining an interaction with Phe 117. This is consistent with the model of secondary structure preservation and hydrophobic clustering in molten-globule intermediates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号