首页 | 本学科首页   官方微博 | 高级检索  
     


Inactivation of enzymes by organic solvents: New technique with well-defined interfacial area
Authors:Ghatorae A S  Bell G  Halling P J
Affiliation:Departments of Bioscience and Biotechnology and Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XW, United Kingdom.
Abstract:A liquid-liquid bubble column apparatus allows exposure of enzyme solutions to water-immiscible organic solvents with a known total interfacial area and welldefined time scales and flow. It allows clear distinction of the different classes of inactivation mechanism. With urease as a model enzyme, octan-2-one and butylbenzene act only through the effects of solvent molecules dissolved in the aqueous phase, giving first-order inactivation at 0.34 and 0.21 h(-1), respectively. Hexane and tridecane act only through exposure to the interface. The amount of urease inactivated is proportional to the total area of interface exposed, rather than to elapsed time, and may be characterized by a rate of about 0.5 mukat m(-2). This is consistent with the formation and (partial) inactivation of a complete adsorbed monolayer of protein. With butan-1-ol, both mechanisms contribute significantly to the observed inactivation. The presence of O(2) increases the rate of interfacial inactivation, but not that by dissolved solvent. (c) 1994 John Wiley & Sons, Inc.
Keywords:enzyme inactivation  organic solvents  urease  interfacial area
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号