首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Harvesting and cryopreservation of lymphatic endothelial cells for lymphatic tissue engineering
Authors:Zhaohua Jiang  Xueqing Hu  James D Kretlow
Institution:a Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
b Department of Plastic Surgery, Second Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
c Department of Bioengineering, Rice University, Houston, TX 77251, USA
Abstract:In order to provide a suitable source of cells for lymphatic tissue engineering, the present study was designed to investigate techniques for harvesting and cryopreservation of human dermal lymphatic endothelial cells (LECs) in vitro. The LECs were isolated from children’s foreskins and then cultured in endothelial growth medium-2 MV (EGM-2-MV) with 5% FBS. The second passage LECs were suspended in cryopreservation solution containing 40% FBS and 10% Me2SO in EGM-2-MV, cooled to −80 °C at about 1 °C/min and stored in liquid nitrogen. Samples were thawed quickly in a 37 °C water bath, and the cryoprotectant was removed by serial elution. The membrane integrity of thawed LECs was determined by trypan blue staining exclusion, and their proliferation was evaluated using the MTT method. The expanded cells of two groups were identified using immunofluorescence staining and RT-PCR with lymphatic-specific markers such as Podoplanin and VEGFR-3. Uptake of fluorescent DiI-Ac-LDL and microtubular formation in three-dimensional cultures were used to detect the function of LECs. Flow cytometry was applied to identify cells and to measure the apoptosis rate as well. Cryopreservation resulted in a retrieval of 67 ± 4% and an intact cell rate of 80 ± 3%. The early apoptosis rate of thawed LECs (9.15 ± 0.34%) was higher than that of fresh control LECs (5.31 ± 0.23%). The growth curves of thawed LECs were similar to those of fresh LECs. The thawed LECs were propagated for at least 6-7 passages without alterations in phenotype and function. Highly purified LECs can be isolated by immunomagnetic beads from human dermis. The cryopreserved/thawed and recultivated LECs are proven to have high vitality and growth potential in vitro and may be considered suitable seed cells for lymphatic tissue engineering.
Keywords:Lymphatic endothelial cells  Cryopreservation  Dimethyl sulfoxide  Tissue engineering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号