首页 | 本学科首页   官方微博 | 高级检索  
     


Fine mapping and characterization of BPH27, a brown planthopper resistance gene from wild rice (Oryza rufipogon Griff.)
Authors:D. Huang  Y. Qiu  Y. Zhang  F. Huang  J. Meng  S. Wei  R. Li  B. Chen
Affiliation:1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Agricultural College, Guangxi University, Nanning, 530005, China
2. Rice Research Institute, Plant Protection Institute and Guangxi Rice Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
Abstract:The brown planthopper (Nilaparvata lugens Stål; BPH) is one of the most serious rice pests worldwide. Growing resistant varieties is the most effective way to manage this insect, and wild rice species are a valuable source of resistance genes for developing resistant cultivars. BPH27 derived from an accession of Guangxi wild rice, Oryza rufipogon Griff. (Accession no. 2183, hereafter named GX2183), was primarily mapped to a 17-cM region on the long arm of the chromosome four. In this study, fine mapping of BPH27 was conducted using two BC1F2 populations derived from introgression lines of GX2183. Insect resistance was evaluated in the BC1F2 populations with 6,010 individual offsprings, and 346 resistance extremes were obtained and employed for fine mapping of BPH27. High-resolution linkage analysis defined the BPH27 locus to an 86.3-kb region in Nipponbare. Regarding the sequence information of rice cultivars, Nipponbare and 93-11, all predicted open reading frames (ORFs) in the fine-mapping region have been annotated as 11 types of proteins, and three ORFs encode disease-related proteins. Moreover, the average BPH numbers showed significant differences in 96–120 h after release in comparisons between the preliminary near-isogenic lines (pre-NILs, lines harboring resistance genes) and BaiR54. BPH growth and development were inhibited and survival rates were lower in the pre-NIL plants compared with the recurrent parent BaiR54. The pre-NIL exhibited 50.7 % reductions in population growth rates (PGR) compared to BaiR54. The new development in fine mapping of BPH27 will facilitate the efforts to clone this important resistant gene and to use it in BPH-resistance rice breeding.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号