首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase.
Authors:E Blée  F Schuber
Institution:Institute de Biologie Moléculaire des Plantes (CNRS UPR 406), DECM, Institut de Botanique, Strasbourg, France.
Abstract:Soluble epoxide hydrolase purified from soybean catalyzes trans-addition of water across the oxirane ring of cis-9,10-epoxystearic acid with inversion of configuration at the attacked carbon, yielding threo-9,10-dihydroxystearic acid. Kinetic analyses of the progress curves, obtained at low substrate concentrations (i.e. S] much less than Km), and determination of the enantiomeric excess of the residual substrate by chiral-phase high-performance liquid chromatography at different reaction times, indicate that the epoxide hydrolase hydrates preferentially cis-9R, 10S-epoxystearic acid (V/Km ratio, approximately 20). Interestingly, this enantiomer is obtained by epoxidation of oleic acid catalyzed by peroxygenase, a hydroperoxide-dependent oxidase, we have previously described in soybean (Blée, E., and Schuber, F. (1990) J.Biol. Chem. 265, 12887-12894). For the epoxide hydrolase to show high enantioselectivity there must be a free carboxylic acid functionality on the substrate which probably influences its positioning within the active site. This selectivity, which in principle can be used for kinetic resolution of the cis-9,10-epoxystearic acid enantiomers, is much reduced with methyl cis-9,10-epoxystearate. 18O-Labeling experiments indicate that water attacks both cis-9,10-epoxystearic acid enantiomers on the oxirane carbon which has the S-chirality. Results show that soybean epoxide hydrolase produces exclusively threo-9R,10R-dihydroxystearic acid, i.e. a naturally occurring metabolite in higher plants. cis-9,10-Epoxy-18-hydroxystearic acid, a cutin monomer, was a poorer substrate of the epoxide hydrolase than 9,10-epoxystearic acid (V/Km ratio for the preferred enantiomers, approximately 19). From a physiological point of view, peroxygenase and this newly described epoxide hydrolase could be responsible, in vivo, for the biosynthesis of a class of oxygenated fatty acid compounds known to be involved in cutin monomers production and in plant defense mechanisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号