首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of mono-ADP-ribosylation on cytoskeletal actin in chromaffin cells and their release of catecholamine.
Authors:S Tsuyama  H Fujita  R Hijikata  H Okamoto  S Takenaka
Affiliation:Department of Veterinary Science, Osaka Prefecture University, Japan. stsuyama@jyui.vet.osakafu-u.ac.jp
Abstract:To better understand the physiological role of mono-ADP-ribosylation in animals, we examined its role in chromaffin cells. Monoclonal antibodies against rat brain ADP-ribosylhydrolase were prepared, one of which (9E7) completely inhibited the enzyme's activity with ADP-ribosylated actin as the substrate. After actin monomers were polymerized by the addition of Mg2+, mono-ADP-ribosylation induced actin depolymerization. After mono-ADP-ribosylation, the actin monomers did not polymerize by the addition of Mg2+. Polymerized actin cosedimented with chromaffin granules but mono-ADP-ribosylated actin did not. After ADP-ribosylhydrolase on the membrane of chromaffin granules was incubated with 9E7, mono-ADP-ribosylated actin did not cosediment with chromaffin granules. When chromaffin cells permeabilized with saponin were incubated with NAD and 9E7, actin and rho protein was mono-ADP-ribosylated and stimulated catecholamine release from the cells. In histochemical experiments, catecholamine and actin filaments disappeared when the permeabilized chromaffin cells were treated with NAD and 9E7. These findings indicate that mono-ADP-ribosylation breaks the actin barrier in order to move granules during exocytosis, and ADP-ribosylactin hydrolase may keep the granules within the actin barrier.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号