首页 | 本学科首页   官方微博 | 高级检索  
     


An ineffective strain type of Frankia in the soil of natural stands of Alnus glutinosa (L.) Gaertner
Authors:C. Van Dijk  A. Sluimer-Stolk
Affiliation:1. Institute for Ecological Research, Weevers' Duin, Duinzoom 20a, 3233 EG, Oostvoorne, The Netherlands
Abstract:An ineffective strain type of Frankia of unknown strain composition, coded AgI-WD1 was discovered in the soil of wet dune slacks where A. glutinosa was the dominant tree species. Strain type AgI-WD1 was recognized by the development of slow growing root nodules on A. glutinosa testplants inoculated with soil suspensions. Microscopical examination of these nodules showed extremely reduced development of vesicles, normal development of intracellular clusters of hyphae and absence of sporangia. The stability of characteristics of this strain type such as the expression of root nodule symbiosis and ineffectivity of symbiontic N-fixation was demonstrated through ‘subculture’ of ineffective root nodules in successive hydrocultures of A. glutinosa. The nodulation process also differed from normal effective root nodules by the occurrence of resistance to strain type AgI-WD1 among part of the half-siblings of A. glutinosa used in the nodulation tests. Strain type AgI-WD1 was detected in the soil of different dune slacks which are inundated for a large part of the year and in a nearby peatbog covered with alder. The contribution of this strain type to soil populations of Frankia was demonstrated by nodulation potentials that were up to 500 times higher than that of the concurrent effective strain type AgSp-. The distribution of strain type AgI-WD1 appeared to be restricted to sites with water-logged soil conditions. Nodulation experiments pointed to potentials for competitive interactions between effective and ineffective strain thpes, especially to a density dependent reduction of nodule type AgI-WD1 by strain type AgSp-. The impact of competitive interactions is also affected by host trees that are resistant to AgI-WD1. The occurrence of resistance in the study areas was suggested by resistance among seedlings of a local seedbatch (±70% of the half-siblings) and by the absence of ineffective root nodules at site VD7-1, despite a high nodulation potential of the soil population of strain type AgI-WD1.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号