首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Ca2+-ATPase (SERCA1) is inhibited by 4-aminoquinoline derivatives through interference with catalytic activation by Ca2+, whereas the ATPase E2 state remains functional
Authors:Bartolommei Gianluca  Tadini-Buoninsegni Francesco  Moncelli Maria Rosa  Gemma Sandra  Camodeca Caterina  Butini Stefania  Campiani Giuseppe  Lewis David  Inesi Giuseppe
Institution:Department of Chemistry Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy.
Abstract:Several clotrimazole (CLT) and 4-aminoquinoline derivatives were synthesized and found to exhibit in vitro antiplasmodial activity with IC(50) ranging from nm to μm values. We report here that some of these compounds produce inhibition of rabbit sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) with IC(50) values in the μm range. The highest affinity for the Ca(2+)-ATPase was observed with NF1442 (N-((3-chlorophenyl)(4-((4-(7-chloroquinolin-4-yl)piperazin-1-yl)methyl)phenyl)methyl)-7-chloro-4-aminoquinoline) and NF1058 (N-((3-chlorophenyl)(4-(pyrrolidin-1-ylmethyl)phenyl)methyl)-7-chloro-4-aminoquinoline),yielding IC(50) values of 1.3 and 8.0 μm as demonstrated by measurements of steady state ATPase activity as well as single cycle charge transfer. Characterization of sequential reactions comprising the ATPase catalytic and transport cycle then demonstrated that NF1058, and similarly CLT, interferes with the mechanism of Ca(2+) binding and Ca(2+)-dependent enzyme activation (E(2) to E(1)·Ca(2) transition) required for formation of phosphorylated intermediate by ATP utilization. On the other hand, Ca(2+) independent phosphoenzyme formation by utilization of P(i) (i.e. reverse of the hydrolytic reaction in the absence of Ca(2+)) was not inhibited by NF1058 or CLT. Comparative experiments showed that the high affinity inhibitor thapsigargin interferes not only with Ca(2+) binding and phosphoenzyme formation with ATP but also with phosphoenzyme formation by utilization of P(i) even though this reaction does not require Ca(2+). It is concluded that NF1058 and CLT inhibit SERCA by stabilization of an E(2) state that, as opposed to that obtained with thapsigargin, retains the functional ability to form E(2)-P by reacting with P(i).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号