首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interspecific and Intragenic Differences in Codon Usage Bias Among Vertebrate Myosin Heavy-Chain Genes
Authors:Mikio C Aoi  Bryan C Rourke
Institution:Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
Abstract:Synonymous codon usage bias is a broadly observed phenomenon in bacteria, plants, and invertebrates and may result from selection. However, the role of selective pressures in shaping codon bias is still controversial in vertebrates, particularly for mammals. The myosin heavy-chain (MyHC) gene family comprises multiple isoforms of the major force-producing contractile protein in cardiac and skeletal muscles. Slow and fast genes are tandemly arrayed on separate chromosomes, and have distinct patterns of functionality and expression in muscle. We analyze both full-length MyHC genes (~5400?bp) and a larger collection of partial sequences at the 3' end (~500?bp). The MyHC isoforms are an interesting system in which to study codon usage bias because of their length, expression, and critical importance to organismal mobility. Codon bias and GC content differs among MyHC genes with regards to functional type, isoform, and position within the gene. Codon bias even varies by isoform within a species. We find evidence in favor of both chromosomal influences on nucleotide composition and selection against nonsense errors (SANE) acting on codon usage in MyHC genes. Intragenic variation in codon bias and elongation rate is significant, with a strong trend for increasing codon bias and elongation rate towards the 3' end of the gene, although the trend is dependent upon the degeneracy class of the codons. Therefore, patterns of codon usage in MyHC genes are consistent with models supporting SANE as a major force shaping codon usage.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号