首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanism of metal-promoted catalysis of nucleic acid hydrolysis by Escherichia coli ribonuclease H
Authors:C B Black  M Foster  J A Cowan
Institution:(1) Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA, US
Abstract: Catalytic activation of Escherichia coli ribonuclease H by a series of inert chromium complexes Cr(NH3)6-x(H2O)x]3+ (x = 0–6) that bear water and ammine ligands in well-defined geometries in the inner coordination shell has been examined. Such complexes are observed to function by transition state stabilization. The importance of hydrogen bonding and electrostatics to catalytic activation of this reaction were quantitatively evaluated. The availability of Cr(NH3)6-x(H2O)x]3+ complexes of varying coordination geometry also affords a probe of the preferred structural arrangement for hydrogen-bonding interactions. Under the solution conditions employed, a facial array of bound water molecules is required to promote catalysis, as expected from comparison with the ligation of the enzyme-bound Mg2+–cofactor. These results exclude a structural role for the essential metal cofactor. Hydrogen bonding appears to be the dominant stabilizing interaction. In the absence of bound water ligands (for example, in the specific cases of Cr(NH3)6 3+ and Co(NH3)6 3+), hydrogen bond stabilization is precluded: however, catalysis is observed as a result of the increased positive charge on the complex. Apparently the trivalent charge offsets the poorer hydrogen bonding abilities of the ammine ligands. Received: 11 June 1996 / Accepted: 31 July 1996
Keywords:  Ribonuclease H  Mechanism  Magnesium  Inert probes  Hydrogen bonding
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号