首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipoamide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Kinetics of wild-type and mutated enzymes.
Authors:J Benen  W van Berkel  N Dieteren  D Arscott  C Williams  C Veeger  A de Kok
Institution:Department of Biochemistry, Agricultural University, Wageningen, The Netherlands.
Abstract:Three amino acid residues in the active site of lipoamide dehydrogenase from Azotobacter vinelandii were replaced with other residues. His450, the active-site base, was replaced with Ser, Tyr or Phe. Pro451, from X-ray analysis found to be in cis conformation positioning the backbone carbonyl of His450 close to N3 of the flavin, was changed to Ala. Glu455, from X-ray analysis expected to be involved in modulating the pKa of the base (His450), was replaced with Asp and Gln. The general conclusion is that mutation of the His-Glu diad impairs intramolecular electron transfer between the disulfide/dithiol and the FADH-/FAD. The wild-type enzyme functions according to a ping-pong mechanism in the physiological reaction in which the formation of NADH is rate-limiting. Above pH 8.0 the enzyme is strongly inhibited by the product NADH. The pH dependence of the steady-state kinetics using the NAD+ analog 3-acetylpyridine adenine dinucleotide (AcPyAde+) reveals a pKa of 8.1 in the pKm AcPyAde+ plot indicating that this pKa is related to the deprotonation of His450 Benen, J., Berkel van, W., Zak, Z., Visser, T., Veeger, C. & Kok de, A. (1991) Eur. J. Biochem. 202, 863-872] and to the inhibition by NADH. The mutations considerably affect turnover. Enzymes with the mutations Pro451----Ala, His450----Phe and His450----Tyr appear to be almost inactive in both directions. Enzyme His450----Ser is minimally active, V at the pH optimum being 0.5% of wild-type activity in the physiological reaction. Rapid reaction kinetics show that for the His450-mutated enzymes the reductive half reaction using reduced 6,8-thioctic acid amide Lip(SH)2] is rate-limiting and extremely slow when compared using reduced 6,8-thioctic acid amide Lip(SH)2] is rate-limiting and extremely slow when compared to the wild-type enzyme. For enzyme Pro451----Ala it is concluded that the loss of activity is due to over-reduction by Lip(SH)2 and NADH. The Glu455-mutated enzymes are catalytically competent but show strong inhibition by the product NADH (enzyme Glu455----Asp more than Glu455----Gln). The inhibition can largely be overcome by using AcPyAde+ instead of NAD+ in the physiological reaction. The rapid reaction kinetics obtained for enzymes Glu455----Asp and Glu455----Gln deviate from the wild-type enzyme. It is concluded that this difference is due to cooperativity between the active sites in this dimeric enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号