首页 | 本学科首页   官方微博 | 高级检索  
   检索      


RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium
Authors:Gaertner Tara R  Putkey John A  Waxham M Neal
Institution:Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030, USA.
Abstract:The interaction of calmodulin with its target proteins is known to affect the kinetics and affinity of Ca(2+) binding to calmodulin. Based on thermodynamic principles, proteins that bind to Ca(2+)-calmodulin should increase the affinity of calmodulin for Ca(2+), while proteins that bind to apo-calmodulin should decrease its affinity for Ca(2+). We quantified the effects on Ca(2+)-calmodulin interaction of two neuronal calmodulin targets: RC3, which binds both Ca(2+)- and apo-calmodulin, and alphaCaM kinase II, which binds selectively to Ca(2+)-calmodulin. RC3 was found to decrease the affinity of calmodulin for Ca(2+), whereas CaM kinase II increases the calmodulin affinity for Ca(2+). Specifically, RC3 increases the rate of Ca(2+) dissociation from the C-terminal sites of calmodulin up to 60-fold while having little effect on the rate of Ca(2+) association. Conversely, CaM kinase II decreases the rates of dissociation of Ca(2+) from both lobes of calmodulin and autophosphorylation of CaM kinase II at Thr(286) induces a further decrease in the rates of Ca(2+) dissociation. RC3 dampens the effects of CaM kinase II on Ca(2+) dissociation by increasing the rate of dissociation from the C-terminal lobe of calmodulin when in the presence of CaM kinase II. This effect is not seen with phosphorylated CaM kinase II. The results are interpreted according to a kinetic scheme in which there are competing pathways for dissociation of the Ca(2+)-calmodulin target complex. This work indicates that the Ca(2+) binding properties of calmodulin are highly regulated and reveals a role for RC3 in accelerating the dissociation of Ca(2+)-calmodulin target complexes at the end of a Ca(2+) signal.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号