首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Array biosensor based on enzyme kinetics monitoring by fluorescence spectroscopy: application for neurotoxins detection
Authors:Ramanathan M  Simonian A L
Institution:

aMaterials Research and Education Center, Samuel Ginn College of Engineering, 274 Wilmore Laboratory, Auburn University, 201 Ross Hall, Auburn, AL-36849, USA

Abstract:The aim of the present work is to develop an evanescence wave array biosensor exploiting the “kinetic” approach of enzymatic reaction and further detection of the reaction products via pH sensitive fluorophore reporter. To demonstrate the feasibility of this approach, we have developed a biosensor array with the potential for direct detection of organophosphates using as a biorecognition element, an enzyme organophosphorus hydrolase (OPH), conjugated with a pH-sensitive fluorophore, carboxynaphthofluorescein (CNF). The presence of reference spots allows the discrimination of the enzymatic and non-enzymatic based pH changes; bovine serum albumin (BSA) was used as a non-enzymatic scaffold protein for CNF attachment at the reference spots. An array biosensor unit developed at the Naval Research Laboratories (NRL) was adopted as the detection platform and appropriately modified for enzyme-based measurements. A planar multi-mode waveguide was covered with an optically transparent TiO2 layer to increase the surface area available for immobilization.

The biosensor enabled the detection of 2.5 μM paraoxon, and 10 μM DFP and parathion, respectively. Very short response time of 30 s can be achieved with a total analysis time of less than 2 min. When operated at room temperature and stored at 4 °C, the waveguide retained reasonable activity for greater than 45 days.

Keywords:Organophosphorus hydrolase  Array biosensor  Paraoxon  Parathion  DFP  TiO2
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号