首页 | 本学科首页   官方微博 | 高级检索  
     


Glutamate Uptake Stimulates Na+,K+-ATPase Activity in Astrocytes via Activation of a Distinct Subunit Highly Sensitive to Ouabain
Authors:Luc Pellerin   Pierre J. Magistretti
Affiliation:Laboratoire de Recherche Neurologique, Institut de Physiologie et Service de Neurologie du CHUV, Facultéde Médecine, Universitéde Lausanne, Lausanne, Switzerland
Abstract:Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.
Keywords:Sodium pump    Glutamate transporter    Energy metabolism    Glia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号