首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Combined Monte Carlo and molecular dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low cholesterol concentration
Authors:Chiu S W  Jakobsson E  Scott H L
Institution:Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
Abstract:We have applied a hybrid equilibration and sampling procedure for the atomic level simulation of a hydrated lipid bilayer to systems consisting of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol, and palmitoyl-oleyl phosphatidylcholine (POPC) at low (approximately 6%) cholesterol concentration. The procedure is applied to bilayers of 94 molecules of DPPC, 6 molecules of cholesterol, and 3205 water molecules, and to bilayers of 120 molecules of POPC, 8 molecules of cholesterol, and 4268 water molecules, at a temperature of 325 K. After equilibration, three separate 400-ps continuous molecular dynamics runs, separated by 10,000 configurational bias Monte Carlo steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of DPPC and cholesterol, and of pure DPPC, and pure POPC. Certain properties of the bilayers are indistinguishable from cholesterol-free bilayers, including lateral diffusion and electron density. Other properties, most notably the order parameter profile, show the effect of cholesterol even at low concentrations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号