首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PAK4 suppresses motor neuron degeneration in hSOD1G93A‐linked amyotrophic lateral sclerosis cell and rat models
Authors:Chaohua Cong  Weiwei Liang  Chunting Zhang  Ying Wang  Yueqing Yang  Xudong Wang  Shuyu Wang  Di Huo  Hongyong Wang  Di Wang  Honglin Feng
Institution:1. Department of Neurology, The First Clinical College of Harbin Medical University, Harbin China ; 2. Department of Neurology, The Second Clinical College of Harbin Medical University, Harbin China
Abstract:ObjectivesAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway‐mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4’s effect and mechanism of action in ALS.MethodsWe analysed RNA levels by qRT‐PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function.ResultsThe expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR‐9‐5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB‐mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A‐induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway.ConclusionsPAK4 protects MN from degeneration by activating the anti‐apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.

Schematic representation of the mechanism of PAK4 protecting MN from apoptosis in ALS. PAK4 increases CREB levels and activation, leading to the upregulation of PGC‐1a and Bcl‐2, thereby decreasing cleaved‐caspase3 levels, and inhibiting MN degeneration. miR‐9‐5p is responsible for the decreased expression of PAK4 in ALS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号