首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell‐extracellular matrix interactions in the fluidic phase direct the topology and polarity of self‐organized epithelial structures
Authors:Mingxing Ouyang  Jiun&#x;Yann Yu  Yenyu Chen  Linhong Deng  Chin&#x;Lin Guo
Institution:1. Institute of Biomedical Engineering and Health Sciences, School of Pharmacy & School of Medicine, Changzhou University, Changzhou China ; 2. Department of Bioengineering, California Institute of Technology, Pasadena USA
Abstract:IntroductionIn vivo, cells are surrounded by extracellular matrix (ECM). To build organs from single cells, it is generally believed that ECM serves as scaffolds to coordinate cell positioning and differentiation. Nevertheless, how cells utilize cell‐ECM interactions for the spatiotemporal coordination to different ECM at the tissue scale is not fully understood.MethodsHere, using in vitro assay with engineered MDCK cells expressing H2B‐mCherry (nucleus) and gp135/Podocalyxin‐GFP (apical marker), we show in multi‐dimensions that such coordination for epithelial morphogenesis can be determined by cell‐soluble ECM interaction in the fluidic phase.ResultsThe coordination depends on the native topology of ECM components such as sheet‐like basement membrane (BM) and type I collagen (COL) fibres: scaffold formed by BM (COL) facilitates a close‐ended (open‐ended) coordination that leads to the formation of lobular (tubular) epithelium. Further, cells form apicobasal polarity throughout the entire lobule/tubule without a complete coverage of ECM at the basal side, and time‐lapse two‐photon scanning imaging reveals the polarization occurring early and maintained through the lobular expansion. During polarization, gp135‐GFP was converged to the apical surface collectively in the lobular/tubular structures, suggesting possible intercellular communications. Under suspension culture, the polarization was impaired with multi‐lumen formation in the tubules, implying the importance of ECM biomechanical microenvironment.ConclusionOur results suggest a biophysical mechanism for cells to form polarity and coordinate positioning at tissue scale, and in engineering epithelium through cell‐soluble ECM interaction and self‐assembly.
Keywords:cell‐  ECM interaction  epithelial polarity  epithelial self‐  assembly  epithelial topology  fluidic phase  tubulogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号