首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The kinetics of reoxidation of yeast complex III. An evaluation of the Q-cycle
Authors:A L Tsai  J S Olson  G Palmer
Abstract:The reoxidation of reduced yeast Complex III by oxidants believed to react with cytochrome c1 exhibited multiple phases for both cytochrome c1 and the cytochromes b; the reoxidation of cytochrome b, but not cytochrome c1, was markedly slowed by the presence of antimycin. The data are consistent with the Q-cycle or any other scheme which proposes a branched path for electron transport between the cytochrome b centers and the endogenous Q6, provided certain constraints are relaxed. The reoxidation of the endogenous quinone proceeded at a rate comparable to that of the rapidly reacting cytochrome b and appeared to be complete within 100 ms. Removal of the endogenous quinone did not change the rate or extent of reoxidation of any of the heme centers, demonstrating that quinone is not required for electron transport between cytochromes b and the iron-sulfur cluster. This result is inconsistent with the requirements of the Q-cycle. Funiculosin completely inhibited the reoxidation of cytochrome b whereas the reoxidation of cytochrome c1 exhibited simple first-order kinetics in the presence of this inhibitor, implying that the iron-sulfur cluster is on the direct path of electron transfer from cytochrome b to cytochrome c1. Potent inhibition of cytochrome b oxidation was also observed with myxothiazol and mucidin. The reaction of reduced Complex III with Q1 also exhibited multiple phases in the oxidation of the cytochrome b centers; these phases were unaffected by the presence of myxothiazol. Addition of antimycin, or removal of the endogenous quinone, eliminated the rapid phases; only one of the cytochrome b centers was oxidized under these conditions. Epr showed that it is the low-potential cytochrome b that is the species rapidly oxidized.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号