首页 | 本学科首页   官方微博 | 高级检索  
     

一类潜伏期和染病期均传染且具非线性传染率的流行病模型
引用本文:张彤,方道元. 一类潜伏期和染病期均传染且具非线性传染率的流行病模型[J]. 生物数学学报, 2006, 21(3): 345-350
作者姓名:张彤  方道元
作者单位:1. 浙江工业大学,之江学院,浙江,杭州,310024
2. 浙江大学,数学系,浙江,杭州,310027
摘    要:研究了一类潜伏期和染病期都传染的具非线性传染率的SEIS流行病模型,确定了各类平衡点存在的条件阈值,讨论了各平衡点的稳定性,揭示了潜伏期传染和染病期传染对流行病发展趋势的共同影响.

关 键 词:流行病模型  非线性传染率  阈值  平衡点  稳定性  Hopf分支
文章编号:1001-9626(2006)03-0345-06
收稿时间:2003-11-11
修稿时间:2003-11-11

A Kind of Epidemic Model with Infectious Force in Both Latent Period and Infected Period and Nonlinear Infection Rate
ZHANG Tong,FANG Dao-yuan. A Kind of Epidemic Model with Infectious Force in Both Latent Period and Infected Period and Nonlinear Infection Rate[J]. Journal of Biomathematics, 2006, 21(3): 345-350
Authors:ZHANG Tong  FANG Dao-yuan
Affiliation:1 Zhijiang College, Zhejiang University of Technology, Hangzhou Zhejiang 310024 China;2 Department of Mathematics, Zhejiang University, Hangzhou Zhejiang 310027 China
Abstract:The purpose of this paper is to study a kind of SEIS epidemic model with infectious force in both latent period and infected period and nonlinear infection rate,the con- ditions and threshold to the existence of various equilibriums are established,the stability of the equilibriums are discussed,the influence of the latent period and inflected period to the epidemic is exposed.
Keywords:Epidemic model  Nonlinear infection rate  Threshold  Equilibrium  Stability  Hopf bifurcation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号