首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical and functional characterization of metal-binding pseudotripeptides with different functionalized N-alkyl residues Dedicated to Professor Dr. Ernst-Gottfried Jaeger on occasion of his 65th birthday
Authors:Seyfarth  Lydia  Greiner  Georg  Kuenzel  Sebastian  Poppitz  Wolfgang  Reissmann  Siegmund
Institution:(1) Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany;(2) Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
Abstract:Summary Pseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn2+, Cu2+, Co2+, Ni2+ and Mn2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn2+ and Ni2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pK a -value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pK a values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity. Dedicated to Professor Dr. Ernst-Gottfried Jaeger on occasion of his 65th birthday.
Keywords:complexation  complex stability  hydrolytic activity  metal ions  potentiometric titration  pseudotripeptides
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号