首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inactivation of photoexcited rhodopsin in retinal rods: the roles of rhodopsin kinase and 48-kDa protein (arrestin)
Authors:N Bennett  A Sitaramayya
Institution:Laboratoire de Biophysique Moléculaire et Cellulaire, Centre d'Etudes Nucléaires de Grenoble, France.
Abstract:The inactivation of excited rhodopsin in the presence of ATP, rhodopsin kinase, and/or arrestin has been studied from its effect on the two subsequent steps in the light-induced enzymatic cascade: metarhodopsin II catalyzed activation of G-protein and G-protein-dependent activation of cGMP phosphodiesterase. The inactivation of G-protein (from light-scattering measurements) and that of phosphodiesterase (from measurements of cGMP hydrolysis) have been studied and compared in reconstituted systems containing various combinations of the proteins involved (rhodopsin, G-protein, phosphodiesterase, kinase, and arrestin). Our results show that rhodopsin kinase alone can terminate the activation of G-protein and that arrestin speeds up the process at a relative concentration similar to that reported in the rod (half-maximal effect at 50 nM for 4.4 microM rhodopsin). Measurements of rhodopsin phosphorylation under identical conditions show that in the presence of arrestin total metarhodopsin II inactivation is achieved when only 0.5-1.4 phosphates are bound per bleached rhodopsin, whereas in the absence of arrestin it requires binding of 12-16 phosphates per bleached rhodopsin. Phosphodiesterase activity can similarly be turned off by kinase, and the process is similarly accelerated by arrestin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号