首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulation of hurricane-like disturbances on a Caribbean seagrass bed
Authors:Vania Cruz-Palacios  Brigitta I van Tussenbroek
Institution:a El Colegio de la Frontera Sur, Unidad Chetumal, Apdo. Postal 424, Chetumal 77900, Quintana Roo, México
b Unidad Académica Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. Postal 1152, Cancún 77500, Quintana Roo, México
Abstract:We tested the hypothesis that hurricanes cause changes in the plant community structure of Caribbean seagrass beds by acting selectively on populations of rooted macrophytes, which include seagrasses and rhizophytic algae. We also tested the hypothesis that susceptibility to elimination of the rooted macrophytes by the disturbance depends on differences in their growth forms. Two commonly registered disturbances by hurricanes in shallow seagrass beds are burial and sediment removal, which were simulated in marked plots of 1.1 × 1.1 m, at two randomly selected stations in Puerto Morelos tropical reef lagoon. The treatments consisted of control (no disturbance), two levels of burial, and two levels of sediment removal, with four replicates per treatment per station. The experiment was initiated in July 2002 and, 2 months afterwards, the densities of the populations of macrophytes were measured in experimental units of 0.8 × 0.8 m within the plots. MDS analysis showed that both sediment removal and burial caused changes in the species composition of the seagrass community. At one station, burial had a greater impact than sediment removal, whereas at the other station, the degree of impact of both types of disturbance was similar. Some macrophytes were consistently removed more than others, supporting the selective elimination hypothesis. Populations of Thalassia testudinum Banks ex König, Halimeda spp., and spongy algae (Avrainvillea spp. and Cladocephalus spp.) were, in almost all cases, undamaged by experimental manipulations. The populations of Syringodium filiforme Kütz., brush-like algae (Penicillus spp. and Rhipocephalus spp.), and Udotea spp. were reduced by more than 70%, when averaged across all manipulations and stations. A comparative analysis of growth forms of the above-mentioned macrophytes suggested that a solid, deeply anchored root-rhizome or rhizoid system, combined with a flexible or modular above-ground structure, is an advantageous characteristic to resist perturbation by hurricanes or storms.
Keywords:Burial  Disturbance  Growth form  Hurricane  Inertia  Macroalgae  Perturbation  Seagrass  Sediment removal
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号