The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function. |
| |
Authors: | S Friedman |
| |
Abstract: | The minor base 3-(3-amino-3-carboxypropyl)uridine (acp3U) in Escherichia coli tRNAPhe was acylated with the N-hydroxysuccinimide esters of acetic, phenoxy-acetic, and naphthoxyacetic acid, as well as the ester of 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-glycine. The derivatives of tRNAPhe formed were all capable of accepting phenylalanine. There were only minor effects on the kinetic parameters of these derivatives for E. coli phenylalanyl-tRNA synthetase. There was no effect on the ability of tRNAPhe to participate in poly(U)- or poly(ACU)-directed polypeptide synthesis or in the poly(U)-stimulated binding to E. coli ribosomes. The rate of photodynamic cross-linking of 4-Srd 8 to Cyd 13 was decreased in tRNAs containing the acetyl and dansyl-glycyl derivatives of acp3U, indicating that acylation of this base may perturb the tertiary structure of the tRNA. This base in tRNAPhe does not appear to play any role in the known biological functions of tRNAPhe. |
| |
Keywords: | |
|
|