首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB
Institution:1. The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract:Recombinant Aeromonas hydrophila 4AK4 harboring phbA and phbB (phaAB) genes encoding β-ketothiolase and acetoacetyl-CoA reductase of Ralstonia eutropha produced a terpolyester of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) P(3HB-co-3HV-co-3HHx)] from mixtures of dodecanoic acid and propionic acid. Depending on the concentration of propionic acid in bacterial cultures, cell growth represented by cellular dry weight (CDW), P(3HB-co-3HV-co-3HHx) contents in dry cells and 3HV molar percentage in the terpolyester ranged from 0.43 g l?1 to 3.29 g l?1, 20.7% to 35.6%, 2.3 mol% to 7.1 mol%, respectively. Number average molecular (Mn) weights of the terpolyesters were 303,000–800,000, independent from monomer fraction content. This terpolyester was characterized by nuclear magnetic resonance (NMR), gel-permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and stress–strain measurement studies. Results showed that the terpolyester had higher thermal stability and elongation at break compared with that of homopolymer poly(3-hydroxybutyrate) (PHB) and its copolymers P(3HB-co-5 mol%3HV) or P(3HB-co-12 mol%3HHx). In addition, the terpolyester had lower melting (Tm) temperatures and enthalpy of fusions (ΔHm) than PHB did.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号