首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced Recyclable Magnetized Palm Shell Waste-Based Powdered Activated Carbon for the Removal of Ibuprofen: Insights for Kinetics and Mechanisms
Authors:Kien Tiek Wong  Yeomin Yoon  Min Jang
Affiliation:1. Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.; 2. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, United States of America.; 3. Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia.; Institute for Materials Science, GERMANY,
Abstract:A novel preparation method of magnetized palm shell waste-based powdered activated carbon (MPPAC, avg. size 112 μm) was developed. The prepared MPPAC was assessed by several physicochemical analyses, and batch tests were performed for ibuprofen (IBP) removal. Field emission scanning electron microscopy (FESEM) and N2 gas isotherms revealed that magnetite and maghemite were homogeneous and deposited mostly on the surface of PPAC without a significant clogging effect on the micropores. Isotherm results showed that 3.8% Fe (w/w) impregnated PPAC [MPPAC-Fe(3.8%)] had about 2.2-fold higher maximum sorption capacity (157.3 mg g-1) and a 2.5-fold higher sorption density (0.23 mg m-2) than pristine PPAC. Both Fourier-transform infrared spectroscopy (FTIR) and isotherm data indicated that the high sorption capacity and density of IBP by MPPAC was primarily attributable to donor-acceptor complexes with the C = O group and dispersive π-π interactions with the carbon surface. Based on kinetic and repeated adsorption tests, pore diffusion was the rate-limiting step, and MPPAC-Fe(3.8%) had about 1.9~2.8- and 9.1~15.8-fold higher rate constants than MPPAC-Fe(8.6%) and palm shell-waste granular activated carbon (PGAC, avg. size 621 μm), respectively. MPPAC showed almost eight fold greater re-adsorption capacity than PPAC due to a thermal catalytic effect of magnetite/maghemite.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号