首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolutionary rates of the Triassic marine macrofauna and sea-level changes: Evidences from the Northwestern Caucasus,Northern Neotethys (Russia)
Institution:1. Department of Geology, University of Pretoria, Pretoria 0002, South Africa;2. Swiss Association of Petroleum Geologists and Engineers, Switzerland
Abstract:A diverse Triassic marine macrofauna from the Northwestern Caucasus sheds new light on the biotic evolution after the end-Permian mass extinction. In the early Mesozoic, the study area was located on the northern margin of the Neotethys Ocean. Data on stratigraphic ranges of 130 genera of brachiopods, bivalves, ammonoids, corals, and sponges have been used to calculate the changes in two evolutionary rates, namely faunal transformation rate (FTR) and rate of transformation of the taxonomic diversity structure (TTDSR). The FTR demonstrates the changes in the generic composition of assemblages through geologic time, whereas the TTDSR indicates changes in the generic control of the species diversity. The Triassic marine macrofauna of the Northwestern Caucasus was characterized by very high FTR and TTDSR during the Early Triassic through early Late Triassic. The FTR slowed in the Middle Triassic, and accelerated again in the Carnian–Norian. In contrast, the FTR was abnormally slow in the Norian–Rhaetian. A remarkable turnover among macrofauna occurred at the Carnian–Norian transition. Regional sea-level changes were similar to the global eustatic fluctuations. It is difficult to establish their direct connections with changes in the evolutionary rates, although the turnover at the Carnian–Norian boundary coincided with a prominent regressive episode. In general, high evolutionary rates reported for the Triassic marine macrofauna of the Northwestern Caucasus may be explained as a consequence of the devastating end-Permian mass extinction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号