An improved protocol for electroporation of Oenococcus oeni ATCC BAA‐1163 using ethanol as immediate membrane fluidizing agent |
| |
Authors: | J.S. Assad‐García M. Bonnin‐Jusserand D. Garmyn J. Guzzo H. Alexandre C. Grandvalet |
| |
Affiliation: | 1. Université de Bourgogne – IUVV Jules Guyot, Laboratoire de Recherche en Vigne et Vin, Dijon, France;2. INRA – Université de Bourgogne, UMR 1229 Microbiologie du sol et de l’Environnement, CMSE, B.P.86510 – F‐21065, Dijon, France;3. Université de Bourgogne, UMR 1229, F‐21000, Dijon, France |
| |
Abstract: | Aims: To finalize an effective and reproducible electroporation procedure to transform Oenococcus oeni ATCC BAA‐1163 strain. Methods and Results: The vector pGID052 was selected to optimize the electroporation procedure. Transformation efficiency was 5·8 × 103 per μg of DNA. Transformation was improved when competent cells were prepared with exponential phase cultures; optimum electroporation parameters were an electric pulse of 12·5 kV cm?1, under a resistance of 200 Ω and the presence of 10% (v/v) ethanol in the electroporation buffer (EPB). Conclusions: An effective protocol to transform O. oeni ATCC BAA‐1163 strain by electroporation has been obtained by addition of ethanol to the EPB. A heterologous expression was obtained in O. oeni ATCC BAA‐1163 by introducing a recombinant vector encoding a truncated form of ClpL2 protein. Significance and Impact of the Study: This is the first report of a successful electroporation of O. oeni ATCC BAA‐1163. The major improvement was the addition of ethanol to the EPB, which has never been reported before as means of enhancing the incorporation of foreign DNA molecules into prokaryote cells by electroporation. This method constitutes a useful tool for the genetic study of this lactic bacterium. |
| |
Keywords: | electroporation membrane fluidizing agent Oenococcus oeni |
|
|