首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiparametric cell cycle analysis by automated microscopy
Authors:Gasparri Fabio  Cappella Paolo  Galvani Arturo
Institution:Biology Department, Oncology, Nerviano Medical Sciences, Nerviano, Italy. fabio.gasparri@nervianoms.com
Abstract:Cell cycle analysis using flow cytometry (FC) to measure cellular DNA content is a common procedure in drug mechanism of action studies. Although this technique lends itself readily to cell lines that grow in suspension, adherent cell cultures must be resuspended in a cumbersome and potentially invasive procedure that normally involves trypsinization and mechanical agitation of monolayer cultures. High-content analysis (HCA), an automated microscopy-based technology, is well suited to analysis of monolayer cell cultures but provides intrinsically less accurate determination of cellular DNA content than does FC and thus is not the method of choice for cell cycle analysis. Using Cellomics's ArrayScan reader, the authors have developed a 4-color multiparametric HCA approach for cell cycle analysis of adherent cells based on detection of DNA content (4,6-diamidino-2-phenylindole DAPI] fluorescence), together with the known cell cycle markers bromo-2-deoxyuridine (BrdU) incorporation, cyclin B1 expression, and histone H3 (Ser28) phosphorylation within a single cell population. Considering all 4 markers together, a reliable and accurate quantification of cell cycle phases was possible, as compared with flow cytometric analysis. Using this assay, specific cell cycle blocks induced by treatment with thymidine, paclitaxel, or nocodazole as test drugs were easily monitored in adherent cultures of U-2 OS osteosarcoma cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号