首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells
Authors:G N Rogers  G Herrler  J C Paulson  H D Klenk
Abstract:Identification of the receptor-destroying enzyme of influenza C virus as a specific neuraminate O-acetylesterase has suggested that 9-O-acetyl-N-acetylneuraminic acid is an essential component of the cell surface receptor of influenza C virus (Herrler, G., Rott, R., Klenk, H.-D., Muller, H.-P., Shukla, A. K., and Schauer, R. (1985) EMBO (Eur. Mol. Biol. Organ.) J. 4, 1503-1506). In this report, three common sialic acids, N-acetylneuraminic acid (NeuAc), N-glycollylneuraminic acid (NeuGc), and 9-O-acetyl-N-acetylneuraminic acid (9-O-Ac-NeuAc) were compared for their ability to mediate attachment of influenza A, B, and C viruses to cells. Human asialoerythrocytes were resialylated to contain the three sialic acids in defined sequence on glycoprotein carbohydrate groups using purified sialyltransferases and corresponding CMP-sialic acid donor substrates. While influenza C virus failed to agglutinate native cells or resialylated cells containing NeuAc and NeuGc, resialylated cells containing 9-O-Ac-NeuAc in three different sialyloligosaccharide sequences were agglutinated in high titer. In contrast, most representative influenza A and B viruses examined preferentially agglutinated cells containing NeuAc and NeuGc and failed to agglutinate cells containing 9-O-Ac-NeuAc. Cells containing 9-O-Ac-NeuAc were sensitive to the action of influenza C virus neuraminate O-acetylesterase which converts 9-O-Ac-NeuAc to NeuAc. This treatment abolished agglutination by influenza C while making the cells agglutinable by several influenza A and B viruses. Finally, the ability of influenza C virus to agglutinate the erythrocytes of various species correlated with the presence of 9-O-Ac-NeuAc. The results provide direct evidence that influenza C virus utilizes 9-O-acetyl-N-acetylneuraminic acid as the primary receptor determinant for attachment to cell surface receptors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号