首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adsorption of monovalent and divalent cations by phospholipid membranes. The monomer-dimer problem.
Authors:J A Cohen and  M Cohen
Abstract:A generalization of the Stern theory is derived to treat the simultaneous adsorption of monovalent cations and divalent cations by single-component phospholipid membranes, where the ion:phospholipid binding stoichiometries are 1:1 for the monovalent cations and 1:1 and/or 1:2 for the divalent cations. This study treats both the situation in which the monovalent and divalent cations compete for membrane binding sites and that in which they do not compete. The general formalism of the screening/binding problem is reviewed, and it is shown how the adsorption problem can be isolated from the electrostatics. The statistical mechanics of mixed 1:1- and 1:2-stoichiometric adsorption (the monomer-dimer problem) is treated, and the problem of simultaneous 1:1 and 1:2 binding is solved. A simple expression for this solution, given in the Bethe approximation, is combined with the electrostatics to yield an adsorption isotherm encompassing both 1:1 monovalent-cation, and 1:1 and 1:2 divalent-cation, binding to charged membranes. A comparison with the simplified treatment of previous authors is made and the significance of their assumptions clarified in light of the present result. The present and previous treatments are plotted for a representative case of Na+ and Ca++ binding to a phosphatidylserine membrane. Criteria are established to permit unambiguous experimental testing of the present vs. previous treatments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号