首页 | 本学科首页   官方微博 | 高级检索  
   检索      


hSulf-1 gene exhibits anticancer efficacy through negatively regulating VEGFR-2 signaling in human cancers
Authors:Ji Weidan  Yang Jiahe  Wang Duanming  Cao Lu  Tan Weifeng  Qian Haihua  Sun Bin  Qian Qijun  Yin Zhengfeng  Wu Mengchao  Su Changqing
Institution:Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & Institute, The Second Military Medical University, Shanghai, China.
Abstract:

Background

Human sulfatase 1 (hSulf-1) is a heparin-degrading endosulfatase that desulfates cell surface heparan sulfate proteoglycans (HSPGs) in extracellular matrix and negatively modulates heparin-binding growth factor and cytokine signaling in cell proliferation. But hSulf-1 function is more complicated, and its molecular mechanism has not been well known.

Principal Findings

To further investigate the functions of hSulf-1 gene in regulating the vascular endothelial growth factor receptor (VEGFR) signaling, a series of vectors expressing hSulf-1, hSulf-1 small hairpin RNA (shRNA) and VEGFR-2 shRNA were generated. hSulf-1 re-expression could downregualte the VEGFR-2 phosphorylation and inhibit cancer cell proliferation both in ovarian and hepatocellular cancer cell lines. Knockdown of hSulf-1 expression by hSulf-1 shRNA enhanced the recovery of high levels of phosphorylated VEGFR-2, and knockdown of VEGFR-2 expression by VEGFR-2 shRNA inhibited the proliferation activity of cancer cells in vitro to some extent. In human cancer xenografts in nude mice, tumor growth was inhibited markedly after injections of adenovirus expressing hSulf-1, with the tumor inhibition rates of 46.19% and 49.56% in ovarian and hepatocellular tumor models, respectively. hSulf-1 expression significantly reduced tumor microvessel density.

Conclusions

The results demonstrated that hSulf-1 re-expression both in ovarian and hepatocellular cancer cells induces antitumor efficacy by attenuating the phosphorylation of VEGFR-2 and suppressing angiogenesis. Therefore, hSulf-1-mediated antiproliferation and antiangiogenesis could be a reasonable approach for cancer therapy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号