首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unusual potassium channels mediate nonadrenergic noncholinergic nerve-mediated inhibition in opossum esophagus
Authors:J Jury  L P Jager  E E Daniel
Abstract:Field stimulation of the circular muscle of the opossum esophagus produces a transient hyperpolarization (inhibitory junction potential, IJP) followed by an "off" depolarization. A similar nonadrenergic, noncholinergic (NANC) response in guinea pig taenia caecum has been shown to be due to an increase in the potassium ion permeability of the smooth muscle cell membrane. Double sucrose gap studies showed a decrease in resistance during the IJP, and a reversal at an estimated membrane potential of about -90 mV (4 mM K+). The reversal potential was dependent on the extracellular potassium concentration, shifting to -75 mV when the potassium in the superfusion medium was increased to 10 mM. The IJP in the opossum esophageal circular smooth muscle is therefore like the IJP of the guinea pig taenia caecum in that it is probably due to a selective increase in potassium ion permeability. Potassium conductance blocking agents, tetraethylammonium chloride (TEA, 20 mM) and 4-aminopyridine (4-AP, 5 mM) both caused a depolarization of the smooth muscle cell membrane, but TEA increased the membrane resistance, whereas 4-AP did not affect the membrane conductance in a consistent way. A decrease in IJP amplitude owing to these agents was not apparent. Apamin (10 microM) did not affect the membrane potential, the membrane resistance, or the IJP. Quinine (0.1 mM) produced effects quantitatively similar to those of TEA. Quinine (1 mM) did abolish the IJP, however, this was likely due to a blockade of impulse transmission of the intramural nerves.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号