首页 | 本学科首页   官方微博 | 高级检索  
     


Suppression of inducible nitric oxide synthase and cyclooxygenase-2 by cell-permeable superoxide dismutase in lipopolysaccharide-stimulated BV-2 microglial cells
Authors:Ji Ae Lee  Ha Yong Song  Sung Mi Ju  Su Jin Lee  Won Yong Seo  Dong Hyeon Sin  Ah Ra Goh  Soo Young Choi  Jinseu Park
Affiliation:1. Department of Biomedical Science and Medical and Bio-material Research Center, Hallym University, Chunchon, 200-702, Korea
2. Research Institute for Bioscience and Biotechnology, College of Natural Sciences, Hallym University, Chunchon, 200-702, Korea
Abstract:Oxidative stress plays a pivotal role in uncontrolled neuro-inflammation leading to many neurological diseases including Alzheimer’s. One of the major antioxidant enzymes known to prevent deleterious effects due to oxidative stress is Cu,Zn-superoxide dismutase (SOD). In this study, we examined the regulatory function of SOD on the LPS-induced signaling pathways leading to NF-kappaB activation, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BV-2 cells using cell-permeable SOD. Treatment of BV-2 cells with cell-permeable SOD led to a decrease in LPS-induced reactive oxygen species (ROS) generation and significantly inhibited protein and mRNA levels of iNOS and COX-2 upregulated by LPS. Production of NO and PGE2 in LPS stimulated BV-2 cells was significantly abrogated by pretreatment with a cell-permeable SOD fusion protein. Furthermore, cell-permeable SOD inhibited LPS-induced NF-kappaB DNA-binding activity and activation of MAP kinases including ERK, JNK, and p38 in BV-2 cells. These data indicate that SOD has a regulatory function for LPS-induced NF-kappaB activation leading to expression of iNOS and COX-2 in BV-2 cells and suggest that cell-permeable SOD is a feasible therapeutic agent for regulation of ROS-related neurological diseases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号