首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Uniaxial mechanical tension promoted osteogenic differentiation of rat tendon-derived stem cells (rTDSCs) via the Wnt5a-RhoA pathway
Authors:Shi Yu  Fu Yujie  Tong Wenxue  Geng Yiyun  Lui Pauline Po Yee  Tang Tingting  Zhang Xiaoling  Dai Kerong
Institution:The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
Abstract:Chronic tendinopathy is a tendon disorder that is common in athletes and individuals whose tendons are subjected to repetitive strain injuries. The presence of ossification worsened the clinical manifestation of the disorder. The change of tendon loading due to mechanical overload, compression, or disuse have been implicated as the possible etiologies, but the pathological mechanisms of tendinopathy remain unclear. In this study, we demonstrated that ossification in tendon tissue might be due to the osteogenesis of tendon‐derived stem cells (TDSCs) induced by uniaxial mechanical tension (UMT) which mimics the mechanical loading in tendon. Rat TDSCs (rTDSCs) could be induced to differentiate into osteogenic lineage after treatment with 2% elongation UMT for 3 days as shown by the increased expression Runx2 mRNA and protein, Alpl mRNA, collagen type 1 alpha 1 (Col1a1) mRNA, ALP activity, and ALP cytochemical staining. RhoA, an osteogenesis regulator, was activated in rTDSCs upon UMT stimulation. Blockage of RhoA activity in rTDSCs by C3 toxin or ROCK activity, a downstream target of RhoA, by Y‐27632 inhibited UMT‐induced osteogenesis in rTDSCs. UMT up‐regulated the mRNA expression of Wnt5a but not the other non‐canonical Wnts. The inhibition of Wnt5a expression by siRNA abolished UMT‐induced Runx2 mRNA expression and RhoA activation in rTDSCs and the inhibition of Runx2 expression could be rescued by addition of LPA, a RhoA activator. In conclusion, our results showed that UMT induced osteogenic differentiation of rTDSCs via the Wnt5a‐RhoA pathway, which might contribute to ectopic ossification in tendon tissue due to mechanical loading. J. Cell. Biochem. 113: 3133–3142, 2012. © 2012 Wiley Periodicals, Inc.
Keywords:UNIAXIAL MECHANICAL TENSION (UMT)  OSTEOGENIC DIFFERENTIATION  RAT TENDON DERIVED STEM CELLS (rTDSCs)  Runx2  RhoA  Wnt5A
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号