首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential Regulation of Phosphoinositide Phosphodiesterase Activity in Brain Membranes by Guanine Nucleotides and Calcium
Authors:Rueben A Gonzales  Fulton T Crews
Institution:Department of Pharmacology, Louisiana State University Medical Center, New Orleans 70112.
Abstract:We have shown previously that calcium and guanine nucleotides stimulate the activity of a phosphoinositide (PI) phosphodiesterase in membranes from rat cerebral cortex and that their effects are additive. To understand further guanine nucleotide- and calcium-stimulated PI phosphodiesterase activity, we have investigated the pH sensitivity and effects of inhibitors on the two modes of stimulation. NaF stimulates PI hydrolysis in brain membranes with an EC50 of 2 mM and a maximal effect at 10 mM, suggesting that a guanine nucleotide binding protein can regulate PI phosphodiesterase. Neomycin inhibited guanylylimidodiphosphate (GppNHp)-stimulated PI phosphodiesterase activity in a concentration-dependent manner, with 90% inhibition at 0.3 mM. Neomycin was not as effective at inhibiting calcium-dependent PI hydrolysis (32% inhibition at 0.3 mM). Chloroquine also had a greater inhibitory effect against GppNHp-stimulated PI phosphodiesterase activity compared to calcium-dependent activity. Guanine nucleotide- and NaF-dependent activations of PI phosphodiesterase were strongly pH-dependent, with greatest stimulation observed at pH 5-6 and inhibition at more alkaline pH. Calcium-stimulated PI hydrolysis was not as sensitive to changes in pH and had a peak of activity at pH 9. Our findings of different pH optima and differential sensitivity to inhibitors suggest that calcium and guanine nucleotides may regulate PI phosphodiesterase in rat cortical membranes through independent mechanisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号